Approximation in rough native spaces by shifts of smooth kernels on spheres

نویسندگان

  • Jeremy Levesley
  • X. Sun
چکیده

Abstract. Within the conventional framework of a native space structure, a smooth kernel generates a small native space, and “radial basis functions” stemming from the smooth kernel are intended to approximate only functions from this small native space. Therefore their approximation power is quite limited. Recently, Narcowich, Schaback and Ward [NSW], and Narcowich and Ward [NW], respectively, have studied two approaches that have led to the empowerment of smooth radial basis functions in a larger native space. In the approach of [NW], the radial basis function interpolates the target function at some scattered (prescribed) points. In both approaches, approximation power of the smooth radial basis functions is achieved by utilizing spherical polynomials of a (possibly) large degree to form an intermediate approximation between the radial basis approximation and the target function. In this paper, we take a new approach. We embed the smooth radial basis functions in a larger native space generated by a less smooth kernel, and use them to approximate functions from the larger native space. Among other results, we characterize the best approximant with respect to the metric of the larger native space to be the radial basis function that interpolates the target function on a set of finite scattered points after the action of a certain multiplier operator. We also establish the error bounds between the best approximant and the target function.

منابع مشابه

Approximation in Sobolev Spaces by Kernel Expansions

For interpolation of smooth functions by smooth kernels having an expansion into eigenfunctions (e.g. on the circle, the sphere, and the torus), good results including error bounds are known, provided that the smoothness of the function is closely related to that of the kernel. The latter fact is usually quantified by the requirement that the function should lie in the “native” Hilbert space of...

متن کامل

S-APPROXIMATION SPACES: A FUZZY APPROACH

In this paper, we study the concept of S-approximation spaces in fuzzy set theory and investigate its properties. Along introducing three pairs of lower and upper approximation operators for fuzzy S-approximation spaces, their properties under different assumptions, e.g. monotonicity and weak complement compatibility are studied. By employing two thresholds for minimum acceptance accuracy and m...

متن کامل

A Note on Belief Structures and S-approximation Spaces

We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory...

متن کامل

Interval Type-2 Fuzzy Rough Sets and Interval Type-2 Fuzzy Closure Spaces

The purpose of the present work is to establish a one-to-one correspondence between the family of interval type-2 fuzzy reflexive/tolerance approximation spaces and the family of interval type-2 fuzzy closure spaces.

متن کامل

Approximation beats concentration? An approximation view on inference with smooth radial kernels

Positive definite kernels and their associated Reproducing Kernel Hilbert Spaces provide a mathematically compelling and practically competitive framework for learning from data. In this paper we take the approximation theory point of view to explore various aspects of smooth kernels related to their inferential properties. We analyze eigenvalue decay of kernels operators and matrices, properti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of Approximation Theory

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2005